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We use conventional vector notations of multidimensional Fourier
analysis, as in [5]. LetfE= U(Tlli), T c [0,217) (always tacitly assumed to be
extended to all of Rm, 217-periodic in each variable), For n (n t , ... , nm) E= zm,
the Fourier coefficient of rank n off is

J(n) = (217)-''' r f(t)C ill
'/ cit.

"1'.'11.

The spherical partial sum of rank N o of the Fourier series off is

SN(f~ t) = I J(n)e illi
,

!11 ~;N

This is the convolution f *D N 01'( with the corresponding spherical Dirichlet
kernel

Ll;::')(t) c',' I eill "

!iI <,\

and various convergence questions, especially that of the uniform convergence
of SN for f r= C(Tni), depend upon estimates for the spherical Lebesgue
constants:

So far as I am aware, the only studies devoted to 11 i-y1) for In 2 to have
appeared in print are those of Mitchell [2, 3]. She proved in [2], using intricate
arguments based upon refined estimates for the distribution of lattice points,
that Il~) =, O(N2/3) and 11,~) O(N4 j 3(log N)5/3). In [3] she asserted that a
more precise analysis yields 11\:;) c.=, O(Nl/2), but did not give details. As
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remarked in [2], we also have the estimate A,~n) = O(NIil/2) for all rn, by a
simple use of the Schwartz inequality. The purpose of this note is to prove,
by a new and simple method,

THEOREM. A,V l = O(NIIII-1)/2) for m 2.

Remark. The exponent (t)(m-- I) is sharp. This is a consequence of
results of V. P. lI'in in Chapter 3 of [I] (see especially p. 93 of the English
version). Il'in does not restrict himself to Fourier series, but studies more
general eigenfunction expansions. There is little doubt that the above theorem
can be deduced also from I!'in's results, however the following method of
proof seems to be of interest, especially since it applies, with minor modifi
cations, to summation methods based on convex bodies other than spheres.

The essence of the theorem is contained in the following lemma, whereby
A ecce A(Rm) denotes as usual the set of Fourier transforms of functions in
V(RIII), with lilA defined to be the norm offin V(RIII).

LEMMA. Let m
that

2 and N I. There is afimction F = Fw EO A(RIII) such

(i)

(ii)

(iii)

(iv)

F(x) = I, I x i

F(x) = 0, I x,

° F(x) I,

N,

N + I,

where C depends only on m.

Assuming this, let us show how the theorem follows. As is well known
(see, e.g., Stein and Weiss [5, p. 251] the restriction F I zm is the sequence of
Fourier coefficients of a function 'P EO V( Tilt) whose U(TIlI) norm does not
exceed i, F !IA . But

fj!(n )eill ' t

N<::inl~N+-l

and the latter sum has U(TIlI) norm, and a fortiori LI( Till) norm, not exceeding
C'NIIlI-l)/2. Hence,

A(m) < I' 'I . C'N 1m - 1)/2
N -·Cc i 'P I L'IT"') .,

where C', C" depend only on m. This proves the theorem.

Proof of lemma. Let G denote the characteristic function of the unit ball
in Rm, and let K EO C"'(Rn') have support in 1x IL moreover K(x) a and
f K dx ..... I. Let F(x) ~~ FN(x) denote the convolution of the functions
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G(x!(N +m and K. Then F belongs to A(RIII) and clearly satisfies (i), Oi)
and (iii). Defining

g(t) == (27T)'"1 JG(x)eil '
j

' clx

and k, f likewise as the "backward" Fourier transforms of K, F we see that

1(t) = (27T)iII(N .j. 1)i11 g«N + 1)t) k(I).

To complete the proof we must show that

Ji 1(/)! cll = 0(N·(m-I)/2).

First, we have the wel1-known estimate

(1)

(2)

g(t) = O(! ll li11 +1I/2),

Indeed, cf. [5, p. 171],

111 -+ 00. (3)

g(t) = em 11 l-m/2 J m / 2(lll)

and this, plus the classical estimate Jm / 2(1 11) == 0(1 t !-1/2), as IIi -+ 00, for
the Bessel function, yields (3).

Now, from (I), since g and k are bounded on Rm,

r 11(1)1 cit ~~ 0(1).
• Itl (;1/ N

Moreover, using (3), we have for constant A depending only on m,

r 1/(I)! dl ~ ANm J (N 11 1)-(m+1)/2 I k(t)1 dt
"I tln/ N Itl>1/ N

~ ANlm-l)/2 r It 1-(m+1)/2 1 k(/)1 dt
'Rm

(4)

and since the last integral is finite (recall that m > 1), this estimate, together
with (4), yields (3), and the theorem is proved.

Remark. With slight modification, the above argument also yields the
familiar estimate 11,~) == O(\og N). In the case m = 1 we could take for k
the characteristic function of [-L H in which case f becomes the familiar
"trapezoid kernel."
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The estimate for A~") yields as corollaries a number of convergence

theorems for spherical partial sums. Since such deductions involve only
very well known techniques, we give only a single illustration, also contained
in the results of II'in [I].

COROLLARY. Let fE C(TIII) haue a (suitably high order) modulus ol
smoothness wU; 0) satis/ving wU; 0) 0(0(111-1)/2) as 0 ->- O. Then, S,.:Cf; t)

converges to f unilormly as N >- C1J. The exponcnt (m - I )/2 is sharp.

Proal (Outline). The hypothesis on f implies distU; P,v) o(N (m I);~),

where P y denotes the set of linear combinations of the exponentials e ill
.
t
,

in I N. (The proof of this is similar to that of [4, p. 210, Theorem 9.3.3.1]).
Now, the reasoning used in proving [4, Theorem 9.3.4.2] plus the fact that
the C( Pll) -+ C(TIII) norm of the map f->- S,v is O(N-t lll

-
1 )/"), proves the

first assertion in the corollary. The sharpness is a consequence of II'in's
results.

CONCLUDING REMARKS

(I) In connection with the corollary, observe that by the (generalized)
Bernstein theorem, w(o) O(O(lIIi~hE) implies the convergence of 2:: i /(n)].

Thus, to ensure uniform convergence requires nearly as strong a "Lipschitz"
condition as that which ensures absolute convergence. This is of course a
peculiar feature of the spherical sums, of the fact that A.~I/) is "so large."

(2) There remain several interesting problems about the A~I/), especially

(il Does A,~") increase monotonically with N (as is the ca~,e when
III = 1)?

(ii) What is the asymptotic behavior of A~"). as N - >- C1J, for flxed m?
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